

Jay Flakus CITY OF YERINGTON 102 South Main Street Yerington, NV 89447

Project: COY PW LY-0255-C Mason Road Well / Soc's Ph II & V

Dear Jay Flakus:

It is the policy of Silver State Analytical Laboratory - Reno to strictly adhere to a comprehensive Quality Assurance Plan that ensures the data presented in this report are both accurate and precise. Silver State Analytical Laboratory - Reno maintains accreditation in the State of Nevada (NV-00015) and the State of California (ELAP 2990).

The data presented in this report was obtained from the analysis of samples received under a chain of custody. Unless otherwise noted below, samples were received in good condition, properly preserved and within the hold time for the requested analyses. Any anomalies associated with the analysis of the samples have been flagged with an appropriate explanation in the Analysis Report section of the Laboratory Report.

19061599: CARBAMATES 531, DBCP&EDB-504, DIQUAT-549, ENDOTHALL-548, GLYPHOSATE 547, HERB-515, PEST&PCB 508, and SVOC-525 have been Sub Contracted.

Sincerely,

Califia

Carly Wood Laboratory Director 1135 Financial Blvd Reno, NV 89502

Si Ana	IverState Iytical Laboratorie ierra Environmental Monitorin	Silver State Lab 1135 Financial J Reno, NV 89502 (775) 857-2400 J www.ssalabs.co	ss-Reno Blvd 2 FAX: (888) 398-7(m	002		An Worl Date	Analytical RepWorkorder#:1906Date Reported:7/15					
Client:	CITY OF YERINGT	ON				Sampled	By Dennis B	ecker				
Project Name: PO #:	COY PW LY-0255-0	C Mason Road V	Well / Soc's Ph	II & V								
Laboratory Accr	editation Number NV	/015/CA2990										
Laboratory ID 19061599-01	Client Mason	Sample ID Road Well - SC	DC's Ph II & V	Dat 06/2	t e/Time Sam p 27/2019 9:45	led	Date Receiv 6/27/2019	ed				
Parameter	Met	hod	Result	Units	MCL	Analyst	Date/Time Analyzed	Data Flag				
Carbamates	EPA	531 Se	ee Report			CW						
DBCP & EDB	EPA	504 Se	ee Report			CW						
Diquat	EPA	549 Se	ee Report			CW						
Endothall	EPA		CW									

CW

CW

CW

CW

See Report

See Report

See Report

See Report

EPA 547

EPA 515

EPA 508

EPA 525

Original

Glyphosate

Herbicides

SVOC

PCB & Pesticides

Joe Nava Sierra Environmental Monitoring 1135 Financial Blvd Reno, NV 89502

RE: Report for A9F3812 Drinking Water Organics - NV

Dear Joe Nava,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 6/28/2019. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

This certificate of analysis shall not be reproduced except in full, without written approval of the laboratory.

If additional clarification of any information is required, please contact your Project Manager, Heather S. White , at 559-497-2888.

Thank you again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Heather S. White, Project Manager

Accredited in Accordance with NELAP ORELAP #4021-009

Case Narrative

Project and	Report Details		Invoice Details
Client:	Sierra Environmental Mo	nitoring	Invoice To: Sierra Environmental Monitoring
Report To:	Joe Nava		Invoice Attn: Kimberly Grover
Project #:	19061599		Project PO#: -
Received:	6/28/2019 - 12:45		-
Report Due:	7/15/2019		
Sample Re	ceipt Conditions		
Cooler: Def	ault Cooler	Containers Intact	
Temperature	on Receipt °C: 0.5	COC/Labels Agree	

Preservation Confirmed Received On Wet Ice Packing Material - Other Sample(s) were received in temperature range. Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

- BS Blank spike recoveries did not meet acceptance limits.
- BS1.0 Blank spike recovery for this analyte was biased high; no material impact on reported result as sample is ND for this parameter.
- BS1.3 Blank Spike recovery meets the wider acceptance criteria of 50-150% when the spike level is at or below the reporting limit (RL).
- CV0.0 CCV recovery was above method acceptance limits; no material impact on reported result as sample is ND for this parameter.
- MS1.0 Matrix spike recoveries exceed control limits.
- MS1.2 Matrix spike recovery exceeds lower control limit. Reported results for parent matrix should be considered estimated due to matrix interferences.

Report Distribution

Recipient(s)	Report Format	CC:
Joe Nava	NEVADA.RPT	cwood@ssalabs.com
Kimberly Grover	NEVADA.RPT	

Sample Summary

Sierra Environmental Monitoring 1135 Financial Blvd Reno, NV 89502

Analysis	Method	Laboratory Container ID	Client Container ID
A9F3812-01			
SampleName: 19061599-01A		Sampled:	06/27/2019 09:45
Matrix: Water		Received:	06/28/2019 12:45
EDB and DBCP by GC-ECD (Federal)	EPA 504.1	L	
Organohalide Pesticides, PCBs by GC-ECD (Federal)	EPA 505	L	
Chlorinated Acid Herbicides by GC-ECD (40 CFR 141.	EPA 515.4	А	
Semi-Volatile Organics by GC-MS (Federal)	EPA 525.3	В	
Carbamates by HPLC (Federal)	EPA 531.1	D	
Glyphosate by HPLC (Federal)	EPA 547	G	
Endothall by GC-MS (Federal)	EPA 548.1	E	
Diquat by HPLC (Federal)	EPA 549.2	F	

Certificate of Analysis

Sample ID: A9F3812-01 Sampled By: Dennis Becker Sample Description: 19061599-01A // Mason Road Well Soc's Ph II & V Sample Date - Time: 06/27/19 - 09:45 Matrix: Drinking Water Sample Type: Grab

BSK Associates Laboratory Fresno

Organics

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
EDB and DBCP by GC-ECD (Fe	ederal)								
Dibromochloropropane (DBCP)	EPA 504.1	ND	0.020	ug/L	1	A909293	07/02/19	07/04/19	
Ethylene Dibromide (EDB)	EPA 504.1	ND	0.010	ug/L	1	A909293	07/02/19	07/04/19	
Surrogate: 1-Br-2-Nitrobenzene	EPA 504.1	108 %	Acceptable	e range: 70	0-130 %				
Organohalide Pesticides, PCBs	s by GC-ECD (Fede	ral)							
Aldrin	EPA 505	ND	0.075	ug/L	1	A909293	07/02/19	07/04/19	
Chlordane	EPA 505	ND	0.20	ug/L	1	A909293	07/02/19	07/04/19	
Dieldrin	EPA 505	ND	0.020	ug/L	1	A909293	07/02/19	07/04/19	
Endrin	EPA 505	ND	0.010	ug/L	1	A909293	07/02/19	07/04/19	
Heptachlor	EPA 505	ND	0.040	ug/L	1	A909293	07/02/19	07/04/19	
Heptachlor Epoxide	EPA 505	ND	0.020	ug/L	1	A909293	07/02/19	07/04/19	
Hexachlorobenzene	EPA 505	ND	0.10	ug/L	1	A909293	07/02/19	07/04/19	
Hexachlorocyclopentadiene	EPA 505	ND	0.10	ug/L	1	A909293	07/02/19	07/04/19	
Lindane	EPA 505	ND	0.020	ug/L	1	A909293	07/02/19	07/04/19	
Methoxychlor	EPA 505	ND	0.10	ug/L	1	A909293	07/02/19	07/04/19	
PCB Aroclor Screen	EPA 505	ND	0.10	ug/L	1	A909293	07/02/19	07/04/19	
Toxaphene	EPA 505	ND	1.0	ug/L	1	A909293	07/02/19	07/04/19	
Surrogate: 1-Br-2-Nitrobenzene	EPA 505	108 %	Acceptable	e range: 70	0-130 %				
Chlorinated Acid Herbicides by	GC-ECD (40 CFR	<u>141.</u>							
2,4,5-T	EPA 515.4	ND	1.0	ug/L	1	A909455	07/05/19	07/05/19	
2,4,5-TP (Silvex)	EPA 515.4	ND	0.20	ug/L	1	A909455	07/05/19	07/05/19	
2,4-D	EPA 515.4	ND	0.10	ug/L	1	A909455	07/05/19	07/05/19	CV0.0
Bentazon	EPA 515.4	ND	2.0	ug/L	1	A909455	07/05/19	07/05/19	
Dalapon	EPA 515.4	ND	1.0	ug/L	1	A909455	07/05/19	07/05/19	
Dicamba	EPA 515.4	ND	1.5	ug/L	1	A909455	07/05/19	07/05/19	
Dinoseb	EPA 515.4	ND	0.20	ug/L	1	A909455	07/05/19	07/05/19	
Pentachlorophenol	EPA 515.4	ND	0.040	ug/L	1	A909455	07/05/19	07/05/19	
Picloram	EPA 515.4	ND	0.10	ug/L	1	A909455	07/05/19	07/05/19	
Surrogate: DCPAA	EPA 515.4	85 %	Acceptable	e range: 70	0-130 %				
Semi-Volatile Organics by GC-	MS (Federal)								
Alachlor	EPA 525.3	ND	0.20	ug/L	1	A909548	07/08/19	07/10/19	
Atrazine	EPA 525.3	ND	0.10	ug/L	1	A909548	07/08/19	07/10/19	
Benzo(a)pyrene	EPA 525.3	ND	0.020	ug/L	1	A909548	07/08/19	07/10/19	
Bis(2-ethylhexyl) adipate	EPA 525.3	ND	0.60	ug/L	1	A909548	07/08/19	07/10/19	
Bis(2-ethylhexyl) phthalate	EPA 525.3	0.63	0.60	ug/L	1	A909548	07/08/19	07/10/19	
Bromacil	EPA 525.3	ND	1.0	ug/L	1	A909548	07/08/19	07/10/19	BS1.0
Butachlor	EPA 525.3	ND	0.38	ug/L	1	A909548	07/08/19	07/10/19	
Diazinon	EPA 525.3	ND	0.25	ug/L	1	A909548	07/08/19	07/10/19	
Dimethoate	EPA 525.3	ND	10	ug/L	1	A909548	07/08/19	07/10/19	
Metolachlor	EPA 525.3	ND	0.50	ug/L	1	A909548	07/08/19	07/10/19	
Metribuzin	EPA 525.3	ND	0.50	ug/L	1	A909548	07/08/19	07/10/19	
Molinate	EPA 525.3	ND	2.0	ug/L	1	A909548	07/08/19	07/10/19	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

A9F3812 FINAL 07152019 1014

www.BSKAssociates.com

Certificate of Analysis

Sample ID: A9F3812-01 Sampled By: Dennis Becker Sample Description: 19061599-01A // Mason Road Well Soc's Ph II & V Sample Date - Time: 06/27/19 - 09:45 Matrix: Drinking Water Sample Type: Grab

Organics

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Semi-Volatile Organics by GC-MS	<u>S (Federal)</u>								
Propachlor	EPA 525.3	ND	0.50	ug/L	1	A909548	07/08/19	07/10/19	
Simazine	EPA 525.3	ND	0.070	ug/L	1	A909548	07/08/19	07/10/19	
Thiobencarb	EPA 525.3	ND	1.0	ug/L	1	A909548	07/08/19	07/10/19	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	EPA 525.3	94 %	Acceptable	e range:	70-130 %				
Surrogate: Benzo(a)pyrene-d12	EPA 525.3	102 %	Acceptable	e range:	70-130 %				
Surrogate: Triphenyl Phosphate	EPA 525.3	123 %	Acceptable	e range:	70-130 %				
Carbamates by HPLC (Federal)									
3-Hydroxycarbofuran	EPA 531.1	ND	2.0	ug/L	1	A909415	07/03/19	07/04/19	
Aldicarb	EPA 531.1	ND	0.50	ug/L	1	A909415	07/03/19	07/04/19	
Aldicarb Sulfone	EPA 531.1	ND	0.80	ug/L	1	A909415	07/03/19	07/04/19	
Aldicarb Sulfoxide	EPA 531.1	ND	0.50	ug/L	1	A909415	07/03/19	07/04/19	
Carbaryl	EPA 531.1	ND	2.0	ug/L	1	A909415	07/03/19	07/04/19	
Carbofuran	EPA 531.1	ND	0.90	ug/L	1	A909415	07/03/19	07/04/19	
Methomyl	EPA 531.1	ND	2.0	ug/L	1	A909415	07/03/19	07/04/19	
Oxamyl	EPA 531.1	ND	2.0	ug/L	1	A909415	07/03/19	07/04/19	
<u>Glyphosate by HPLC (Federal)</u>									
Glyphosate	EPA 547	ND	6.0	ug/L	1	A909212	06/30/19	07/01/19	
Surrogate: AMPA	EPA 547	88 %	Acceptable	e range:	70-130 %				
Endothall by GC-MS (Federal)									
Endothall	EPA 548.1	ND	9.0	ug/L	1	A909350	07/02/19	07/03/19	MS1.2
Diquat by HPLC (Federal)									
Diquat	EPA 549.2	ND	0.40	ug/L	1	A909282	07/02/19	07/05/19	

		3		Spike	Source		% PEC		DDD	Dete
Analyte	Result	RL	Units	Level	Re <u>sult</u>	%REC	Limits	RPD	Limit	Analyzed Qual
			14.1 0		introl					
Ratch: A000202		EFA JU	J-4. I - QI	uanty CO						Propored 7/0/0040
Datuil. AJUJ2JJ										
Ртер метпоа: ЕРА 505										Analyst: PNN
Blank (A909293-BLK1)										
Dibromochloropropane (DBCP)	ND	0.020	ug/L							07/03/19
Ethylene Dibromide (EDB)	ND	0.010	ug/L							07/03/19
Surrogate: 1-Br-2-Nitrobenzene	0.42			0.46		91	70-130			07/03/19
Blank Spike (A909293-BS1)										
Dibromochloropropane (DBCP)	0.10	0.020	ug/L	0.10	ND	103	70-130			07/03/19
Ethylene Dibromide (EDB)	0.11	0.010	ug/L	0.10	ND	111	70-130			07/03/19
Surrogate: 1-Br-2-Nitrobenzene	0.45		5	0.46		98	70-130			07/03/19
Blank Spike Dup (A909293-BSD1)										
Dibromochloropropane (DBCP)	0.10	0.020	ug/L	0.10	ND	102	70-130	1	20	07/04/19
Ethylene Dibromide (EDB)	0.11	0.010	ug/L	0.10	ND	107	70-130	3	20	07/04/19
Surrogate: 1-Br-2-Nitrobenzene	0.44		5	0.46		95	70-130			07/04/19
Matrix Spike (A909293-MS1), Sourc	e: A9F3442-01									
Dibromochloropropane (DBCP)	0.10	0.020	ug/L	0.10	ND	100	65-135			07/03/19
Ethylene Dibromide (EDB)	0.11	0.010	ug/L	0.10	ND	106	65-135			07/03/19
Surrogate: 1-Br-2-Nitrobenzene	0.43		5	0.46		94	70-130			07/03/19
Matrix Spike Dup (A909293-MSD1),	Source: A9F3442-01									
Dibromochloropropane (DBCP)	0.10	0.020	ug/L	0.10	ND	101	65-135	2	20	07/03/19
Ethylene Dibromide (EDB)	0.11	0.010	ug/L	0.10	ND	105	65-135	0	20	07/03/19
Surrogate: 1-Br-2-Nitrobenzene	0.43		2	0.46		94	70-130			07/03/19
		EPA 5	505 - Qu	ality Cor	ntrol					
Batch: A909293										Prepared: 7/2/2019
Prep Method: EPA 505										Analyst: PNN
Blank (A909293-BLK1)										
Aldrin	ND	0.075	ug/L							07/03/19
Chlordane	ND	0.20	ug/L							07/03/19
Dieldrin	ND	0.020	ug/L							07/03/19
Endrin	ND	0.010	ug/L							07/03/19
Heptachlor	ND	0.040	ug/L							07/03/19
Heptachlor Epoxide	ND	0.020	ug/L							07/03/19
Hexachlorobenzene	ND	0.10	ug/L							07/03/19
Hexachlorocyclopentadiene	ND	0.10	ug/L							07/03/19
Lindane	ND	0.020	ug/L							07/03/19
Methoxychlor	ND	0.10	ug/L							07/03/19
PCB Aroclor Screen	ND	0.10	ug/L							07/03/19
Toxaphene	ND	1.0	ug/L							07/03/19
Surrogate: 1-Br-2-Nitrobenzene	0.42			0.46		91	70-130			07/03/19
Blank Spike (A909293-BS1)										
Aldrin	0.82	0.075	ug/L	0.74	ND	111	70-130			07/03/19
Dieldrin	0.19	0.020	ug/L	0.20	ND	96	70-130			07/03/19
	- 1								AOE204	0 51111 07450040 4044

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

		<u></u>	·····			•				
Amelute	Desult	DI	Unite	Spike	Source	% DEC	%REC		RPD	Date
Analyte	Result	KL	Units	Lever	Result	76REC	Linits	RPD	Linnt	Allalyzeu Quai
		EPA 5	505 - Qu	ality Cor	ntrol					
Batch: A909293 Prep Method: EPA 505										Prepared: 7/2/2019 Analyst: PNN
Blank Spike (A909293-BS1)										
Endrin	0.10	0.010	ug/L	0.10	ND	102	70-130			07/03/19
Heptachlor	0.10	0.040	ug/L	0.10	ND	104	70-130			07/03/19
Heptachlor Epoxide	0.10	0.020	ug/L	0.10	ND	103	70-130			07/03/19
Hexachlorobenzene	1.0	0.10	ug/L	1.0	ND	103	70-130			07/03/19
Hexachlorocyclopentadiene	0.91	0.10	ug/L	1.0	ND	91	70-130			07/03/19
Lindane	0.19	0.020	ug/L	0.20	ND	97	70-130			07/03/19
Methoxychlor	0.95	0.10	ug/L	1.0	ND	95	70-130			07/03/19
Surrogate: 1-Br-2-Nitrobenzene	0.45			0.46		98	70-130			07/03/19
Blank Spike Dup (A909293-BSD1)										
Aldrin	0.81	0.075	ug/L	0.74	ND	109	70-130	2	20	07/04/19
Dieldrin	0.19	0.020	ug/L	0.20	ND	94	70-130	2	20	07/04/19
Endrin	0.098	0.010	ug/L	0.10	ND	98	70-130	5	20	07/04/19
Heptachlor	0.096	0.040	ug/L	0.10	ND	96	70-130	8	20	07/04/19
Heptachlor Epoxide	0.099	0.020	ug/L	0.10	ND	99	70-130	4	20	07/04/19
Hexachlorobenzene	1.0	0.10	ug/L	1.0	ND	102	70-130	2	20	07/04/19
Hexachlorocyclopentadiene	0.81	0.10	ug/L	1.0	ND	81	70-130	11	20	07/04/19
Lindane	0.19	0.020	ug/L	0.20	ND	94	70-130	2	20	07/04/19
Methoxychlor	0.87	0.10	ug/L	1.0	ND	87	70-130	9	20	07/04/19
Surrogate: 1-Br-2-Nitrobenzene	0.44			0.46		95	70-130			07/04/19
Matrix Spike (A909293-MS1), Sourc	e: A9F3442-01									
Aldrin	0.78	0.075	ug/L	0.74	ND	105	65-135			07/03/19
Dieldrin	0.18	0.020	ug/L	0.20	ND	92	65-135			07/03/19
Endrin	0.097	0.010	ug/L	0.10	ND	97	65-135			07/03/19
Heptachlor	0.098	0.040	ug/L	0.10	ND	98	65-135			07/03/19
Heptachlor Epoxide	0.098	0.020	ug/L	0.10	ND	98	65-135			07/03/19
Hexachlorobenzene	1.0	0.10	ug/L	1.0	ND	101	65-135			07/03/19
Hexachlorocyclopentadiene	0.88	0.10	ug/L	1.0	ND	88	65-135			07/03/19
Lindane	0.19	0.020	ug/L	0.20	ND	95	65-135			07/03/19
Methoxychlor	0.88	0.10	ug/L	1.0	ND	88	65-135			07/03/19
Surrogate: 1-Br-2-Nitrobenzene	0.43			0.46		94	70-130			07/03/19
Matrix Spike Dup (A909293-MSD1),	Source: A9F3442-01									
Aldrin	0.81	0.075	ug/L	0.75	ND	108	65-135	3	20	07/03/19
Dieldrin	0.19	0.020	ug/L	0.20	ND	95	65-135	4	20	07/03/19
Endrin	0.096	0.010	ug/L	0.10	ND	95	65-135	1	20	07/03/19
Heptachlor	0.098	0.040	ug/L	0.10	ND	97	65-135	0	20	07/03/19
Heptachlor Epoxide	0.10	0.020	ug/L	0.10	ND	101	65-135	4	20	07/03/19
Hexachlorobenzene	1.0	0.10	ug/L	1.0	ND	101	65-135	1	20	07/03/19
Hexachlorocyclopentadiene	0.89	0.10	ug/L	1.0	ND	88	65-135	1	20	07/03/19
Lindane	0.19	0.020	ug/L	0.20	ND	94	65-135	1	20	07/03/19
Methoxychlor	0.90	0.10	ug/L	1.0	ND	89	65-135	2	20	07/03/19
Surrogate: 1-Br-2-Nitrobenzene	0.43			0.46		94	70-130			07/03/19

								_	_	
Analyte	Posult	PL	Unite	Spike	Source	%PEC	%REC	RPD	RPD	Date
Analyte	Kesuit		-omis		Kesuit	- 70KEG		-RPD		Analyzeu Qual
		EPA 51	15.4 - Q	uality Co	ntrol					
Batch: A909455										Prepared: 7/5/2019
Prep Method: EPA 515.4										Analyst: PNN
Blank (A909455-BLK1)										
2.4.5-T	ND	1.0	ug/L							07/05/19
2,4,5-TP (Silvex)	ND	0.20	ug/L							07/05/19
2,4-D	ND	0.10	ug/L							07/05/19
Bentazon	ND	2.0	ug/L							07/05/19
Dalapon	ND	1.0	ug/L							07/05/19
Dicamba	ND	1.5	ug/L							07/05/19
Dinoseb	ND	0.20	ug/L							07/05/19
Pentachlorophenol	ND	0.040	ug/L							07/05/19
Picloram	ND	0.10	ug/L							07/05/19
Surrogate: DCPAA	33		Ū	36		93	70-130			07/05/19
Blank Spike (A909455-BS1)										
245-T	15	1.0	ua/l	16	ND	91	70-130			07/05/19
2 4 5-TP (Silvex)	0.72	0.20	<u>-</u>	0.80	ND	90	70-130			07/05/19
2.4-D	0.36	0.10	ua/l	0.00	ND	90	70-130			07/05/19
Bentazon	1.9	20	ua/l	20	ND	95	70-130			07/05/19
Dalapon	3.8	1.0	ua/l	4.0	ND	94	70-130			07/05/19
Dicamba	0.76	1.5	ua/l	0.80	ND	95	70-130			07/05/19
Dinoseb	0.77	0.20	ua/l	0.80	ND	96	70-130			07/05/19
Pentachlorophenol	0.15	0.040	ua/l	0.00	ND	95	70-130			07/05/19
Picloram	0.38	0.10	ua/L	0.40	ND	95	70-130			07/05/19
Surrogate: DCPAA	35		3,-	36		96	70-130			07/05/19
Blank Spike Dup (A909455-BSD1)										
2.4.5-T	1.5	1.0	ua/L	1.6	ND	95	70-130	4	20	07/06/19
2.4.5-TP (Silvex)	0.74	0.20	ua/L	0.80	ND	93	70-130	3	20	07/06/19
2.4-D	0.41	0.10	ua/L	0.40	ND	103	70-130	14	20	07/06/19
Bentazon	1.9	2.0	ua/L	2.0	ND	97	70-130	2	20	07/06/19
Dalapon	3.9	1.0	ua/L	4.0	ND	97	70-130	4	20	07/06/19
, Dicamba	0.76	1.5	ua/L	0.80	ND	95	70-130	1	20	07/06/19
Dinoseb	0.76	0.20	ua/L	0.80	ND	95	70-130	1	20	07/06/19
Pentachlorophenol	0.15	0.040	ua/L	0.16	ND	93	70-130	2	20	07/06/19
Picloram	0.39	0.10	ua/L	0.40	ND	97	70-130	2	20	07/06/19
Surrogate: DCPAA	27		5	36		76	70-130			07/06/19
Matrix Spike (A909455-MS1), Source:	A9F3408-01									
2,4,5-T	1.8	1.0	ug/L	1.6	ND	100	70-130			07/05/19
2,4,5-TP (Silvex)	0.88	0.20	ug/L	0.80	ND	110	70-130			07/05/19
2,4-D	0.43	0.10	ug/L	0.40	ND	109	70-130			07/05/19
Bentazon	2.0	2.0	ug/L	2.0	ND	100	70-130			07/05/19
Dalapon	3.9	1.0	ug/L	4.0	ND	98	70-130			07/05/19
Dicamba	0.81	1.5	ug/L	0.80	ND	101	70-130			07/05/19
Dinoseb	0.80	0.20	ug/L	0.80	ND	100	70-130			07/05/19
Pentachlorophenol	0.16	0.040	ug/L	0.16	ND	102	70-130			07/05/19
Picloram	0.40	0.10	ug/L	0.40	ND	100	70-130			07/05/19
Surrogate: DCPAA	41			36		115	70-130			07/05/19

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Org		zuanty	Contre	пероп					
				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 5 ⁻	15.4 - Q	uality Co	ntrol					
Batch: A909455				-						Prepared: 7/5/2019
Prep Method: EPA 515.4										Analyst: PNN
Matrix Spike Dup (A909455-MSD1), Sou	urce: A9F3408-01									
2.4.5-T	1.8	1.0	ua/L	1.6	ND	102	70-130	2	30	07/05/19
2 4 5-TP (Silvex)	0.87	0.20	ua/l	0.80	ND	109	70-130	1	30	07/05/19
2 4-D	0.43	0.10	ua/l	0.40	ND	108	70-130	1	30	07/05/19
Bentazon	1.9	2.0	ug/l	20	ND	97	70-130	3	30	07/05/19
Dalapon	3.9	1.0	ua/L	4.0	ND	98	70-130	0	30	07/05/19
Dicamba	0.81	1.5	ua/L	0.80	ND	101	70-130	0	30	07/05/19
Dinoseb	0.78	0.20	ua/L	0.80	ND	98	70-130	2	30	07/05/19
Pentachlorophenol	0.16	0.040	ua/l	0.16	ND	100	70-130	2	30	07/05/19
Picloram	0.38	0.10	ua/L	0.40	ND	96	70-130	4	30	07/05/19
Surrogate: DCPAA	40	0.10	~ <u>9</u> , _	36		110	70-130	•		07/05/19
-										
Batabi A000549		EPA 52	25.3 - Q	uality Co	ntrol					Droporod: 7/9/2010
Prep Method: EPA 525.3										Analyst: .IKF
										, analysis of a
Blank (A909548-BLK1)										
Alachlor	ND	0.20	ug/L							07/08/19
Atrazine	ND	0.10	ug/L							07/08/19
Benzo(a)pyrene	ND	0.020	ug/L							07/08/19
Bis(2-ethylhexyl) adipate	ND	0.60	ug/L							07/08/19
Bis(2-ethylhexyl) phthalate	ND	0.60	ug/L							07/08/19
Bromacil	ND	0.80	ug/L							07/08/19
Butachlor	ND	0.25	ug/L							07/08/19
Diazinon	ND	0.020	ug/L							07/08/19
Dimethoate	ND	1.0	ug/L							07/08/19
Metolachlor	ND	0.50	ug/L							07/08/19
Metribuzin	ND	0.50	ug/L							07/08/19
Molinate	ND	0.50	ug/L							07/08/19
Propachlor	ND	0.50	ug/L							07/08/19
Simazine	ND	0.070	ug/L							07/08/19
Thiobencarb	ND	0.10	ug/L							07/08/19
Surrogate: 1,3-Dimethyl-2-nitrobenzene	1.0			1.0		100	70-130			07/08/19
Surrogate: Benzo(a)pyrene-d12	1.0			1.0		101	70-130			07/08/19
Surrogate: Triphenyl Phosphate	1.1			1.0		112	70-130			07/08/19
Blank (A909548-BLK2)										
Alachlor	ND	0.20	ug/L							07/10/19
Atrazine	ND	0.10	ug/L							07/10/19
Benzo(a)pyrene	ND	0.020	ug/L							07/10/19
Bis(2-ethylhexyl) adipate	ND	0.60	ug/L							07/10/19
Bis(2-ethylhexyl) phthalate	ND	0.60	ug/L							07/10/19
Bromacil	ND	0.80	ug/L							07/10/19
Butachlor	ND	0.25	ug/L							07/10/19
Diazinon	ND	0.020	ug/L							07/10/19
Dimethoate	ND	1.0	ug/L							07/10/19
Metolachlor	ND	0.50	ug/L							07/10/19

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

			j				0/		
Analyte	Result	PL	Units	Spike	Source Result	%REC	%REC	RPD RPD Limit	Date Analyzed Qual
	Hosuit				márica				etter
		EPA 52	25.3 - Q	uality Co	ntrol				_
Batch: A909548									Prepared: 7/8/2019
Prep Method: EPA 525.3									Analyst: JKH
Blank (A909548-BLK2)									
Metribuzin	ND	0.50	ug/L						07/10/19
Molinate	ND	0.50	ug/L						07/10/19
Propachlor	ND	0.50	ug/L						07/10/19
Simazine	ND	0.070	ug/L						07/10/19
Thiobencarb	ND	0.10	ug/L						07/10/19
Surrogate: 1,3-Dimethyl-2-nitrobenzene	0.97			1.0		97	70-130		07/10/19
Surrogate: Benzo(a)pyrene-d12	0.94			1.0		94	70-130		07/10/19
Surrogate: Triphenyl Phosphate	1.1			1.0		113	70-130		07/10/19
Blank Spike (A909548-BS1)									
Alachlor	0.10	0.20	ug/L	0.10	ND	102	70-130		07/08/19
Atrazine	0.055	0.10	ug/L	0.050	ND	109	70-130		07/08/19
Benzo(a)pyrene	0.0081	0.020	ug/L	0.010	ND	81	70-130		07/08/19
Bis(2-ethylhexyl) adipate	0.20	0.60	ug/L	0.20	ND	99	70-130		07/08/19
Bis(2-ethylhexyl) phthalate	0.57	0.60	ug/L	0.60	ND	96	70-130		07/08/19
Bromacil	0.046	0.80	ug/L	0.050	ND	92	70-130		07/08/19
Butachlor	0.048	0.25	ug/L	0.050	ND	96	70-130		07/08/19
Diazinon	0.0089	0.020	ug/L	0.010	ND	89	70-130		07/08/19
Dimethoate	0.37	1.0	ug/L	0.40	ND	93	70-130		07/08/19
Metolachlor	0.051	0.50	ug/L	0.050	ND	101	70-130		07/08/19
Metribuzin	0.049	0.50	ug/L	0.050	ND	99	70-130		07/08/19
Molinate	0.054	0.50	ug/L	0.050	ND	109	70-130		07/08/19
Propachlor	0.052	0.50	ug/L	0.050	ND	103	70-130		07/08/19
Simazine	0.032	0.070	ug/L	0.035	ND	90	70-130		07/08/19
Thiobencarb	0.053	0.10	ug/L	0.050	ND	106	70-130		07/08/19
Surrogate: 1,3-Dimethyl-2-nitrobenzene	1.0		-	1.0		100	70-130		07/08/19
Blank Spike (A909548-BS2)									
Alachlor	0.11	0.20	ug/L	0.10	ND	112	70-130		07/10/19
Atrazine	0.051	0.10	ug/L	0.050	ND	102	70-130		07/10/19
Benzo(a)pyrene	0.0083	0.020	ug/L	0.010	ND	83	70-130		07/10/19
Bis(2-ethylhexyl) adipate	0.24	0.60	ug/L	0.20	ND	120	70-130		07/10/19
Bis(2-ethylhexyl) phthalate	0.77	0.60	ug/L	0.60	ND	128	70-130		07/10/19
Bromacil	0.079	0.80	ug/L	0.050	ND	158	70-130		07/10/19 BS High
Butachlor	0.070	0.25	ug/L	0.050	ND	141	70-130		07/10/19 BS1.3 High
Diazinon	0.0096	0.020	ug/L	0.010	ND	96	70-130		07/10/19
Dimethoate	0.49	1.0	ug/L	0.40	ND	122	70-130		07/10/19
Metolachlor	0.061	0.50	ug/L	0.050	ND	122	70-130		07/10/19
Metribuzin	0.053	0.50	ug/L	0.050	ND	106	70-130		07/10/19
Molinate	0.061	0.50	ug/L	0.050	ND	121	70-130		07/10/19
Propachlor	0.059	0.50	ug/L	0.050	ND	118	70-130		07/10/19
Simazine	0.039	0.070	ua/L	0.035	ND	111	70-130		07/10/19
Thiobencarb	0.058	0.10	ua/L	0.050	ND	115	70-130		07/10/19
Surrogate: 1,3-Dimethyl-2-nitrobenzene	0.94		3. –	1.0		94	70-130		07/10/19

Blank Spike Dup (A909548-BSD1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

		<u> </u>	,,									
Analyta	Popult	DI	Unito	Spike	Source	% REC	%REC	PDD	RPD	Date	Qual	
Analyte	Result	KL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Quai	
		EPA 52	25.3 - Q	uality Co	ntrol							
Batch: A909548										Prepar	ed: 7/8	3/2019
Prep Method: EPA 525.3										A	nalyst	: JKH
Blank Spike Dup (A909548-BSD1)												
Alachlor	0.11	0.20	ug/L	0.10	ND	107	70-130	5	30	07/08/19		
Atrazine	0.054	0.10	ug/L	0.050	ND	109	70-130	0	30	07/08/19		
Benzo(a)pyrene	0.0087	0.020	ug/L	0.010	ND	87	70-130	7	30	07/08/19		
Bis(2-ethylhexyl) adipate	0.22	0.60	ug/L	0.20	ND	111	70-130	11	30	07/08/19		
Bis(2-ethylhexyl) phthalate	0.62	0.60	ug/L	0.60	ND	103	70-130	7	30	07/08/19		
Bromacil	0.050	0.80	ug/L	0.050	ND	100	70-130	9	30	07/08/19		
Butachlor	0.051	0.25	ug/L	0.050	ND	103	70-130	7	30	07/08/19		
Diazinon	0.0088	0.020	ug/L	0.010	ND	88	70-130	1	30	07/08/19		
Dimethoate	0.40	1.0	ug/L	0.40	ND	99	70-130	6	30	07/08/19		
Metolachlor	0.054	0.50	ug/L	0.050	ND	107	70-130	6	30	07/08/19		
Metribuzin	0.052	0.50	ug/L	0.050	ND	104	70-130	5	30	07/08/19		
Molinate	0.057	0.50	ua/L	0.050	ND	115	70-130	5	30	07/08/19		
Propachlor	0.053	0.50	ua/L	0.050	ND	107	70-130	4	30	07/08/19		
Simazine	0.033	0.070	ua/L	0.035	ND	96	70-130	6	30	07/08/19		
Thiobencarb	0.053	0.10	ua/L	0.050	ND	106	70-130	0	30	07/08/19		
Surrogate: 1,3-Dimethyl-2-nitrobenzene	1.0		3,-	1.0		101	70-130			07/08/19		
Blank Spike Dup (A909548-BSD2)												
Alachlor	0.12	0.20	ua/L	0.10	ND	120	70-130	7	30	07/10/19		
Atrazine	0.054	0.10	ua/L	0.050	ND	108	70-130	6	30	07/10/19		
Benzo(a)pvrene	0.0089	0.020	ua/L	0.010	ND	89	70-130	7	30	07/10/19		
Bis(2-ethylhexyl) adipate	0.27	0.60	ua/L	0.20	ND	135	70-130	11	30	07/10/19	BS1.3	Hiah
Bis(2-ethylhexyl) phthalate	0.85	0.60	ua/L	0.60	ND	142	70-130	10	30	07/10/19	BS1.3	Hiah
Bromacil	0.089	0.80	ug/L	0.050	ND	178	70-130	12	30	07/10/19	BS	High
Butachlor	0.075	0.25	ug/L	0.050	ND	150	70-130	6	30	07/10/19	BS1.3	High
Diazinon	0.011	0.020	ug/L	0.010	ND	110	70-130	13	30	07/10/19		-
Dimethoate	0.53	1.0	ug/L	0.40	ND	133	70-130	9	30	07/10/19	BS1.3	High
Metolachlor	0.065	0.50	ug/L	0.050	ND	130	70-130	6	30	07/10/19		-
Metribuzin	0.058	0.50	ug/L	0.050	ND	117	70-130	9	30	07/10/19		
Molinate	0.064	0.50	ug/L	0.050	ND	128	70-130	5	30	07/10/19		
Propachlor	0.061	0.50	ug/L	0.050	ND	122	70-130	4	30	07/10/19		
Simazine	0.042	0.070	ug/L	0.035	ND	119	70-130	6	30	07/10/19		
Thiobencarb	0.061	0.10	ug/L	0.050	ND	121	70-130	5	30	07/10/19		
Surrogate: 1,3-Dimethyl-2-nitrobenzene	0.98		Ū	1.0		98	70-130			07/10/19		
Matrix Spike (A909548-MS1), Source:	: A9F3586-01											
Alachlor	0.41	0.20	ug/L	0.38	ND	107	70-130			07/08/19		
Atrazine	0.20	0.10	ug/L	0.19	ND	106	70-130			07/08/19		
Benzo(a)pyrene	0.033	0.020	ug/L	0.038	ND	81	70-130			07/08/19		
Bis(2-ethylhexyl) adipate	0.91	0.60	ug/L	0.76	ND	120	70-130			07/08/19		
Bis(2-ethylhexyl) phthalate	2.6	0.60	ug/L	2.3	ND	113	70-130			07/08/19		
Bromacil	0.24	0.80	ug/L	0.19	ND	124	70-130			07/08/19		
Butachlor	0.19	0.25	ug/L	0.19	ND	100	70-130			07/08/19		
Diazinon	0.039	0.020	ug/L	0.038	ND	104	70-130			07/08/19		
Dimethoate	1.6	1.0	ug/L	1.5	ND	108	70-130			07/08/19		
Metolachlor	0.20	0.50	ug/L	0.19	ND	107	70-130			07/08/19		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

		nganics G	luanty	Contro	пкероп					
				Spike	Source	~~~~~	%REC		RPD	Date
Analyte	Result	RL	Units	Levei	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 52	25.3 - Q	uality Co	ntrol					
Batch: A909548										Prepared: 7/8/2019
Prep Method: EPA 525.3										Analyst: JKF
Matrix Spike (A909548-MS1). Source: A	V9F3586-01									
Metribuzin	0.20	0.50	ug/L	0.19	ND	107	70-130			07/08/19
Molinate	0.20	0.50	uq/L	0.19	ND	106	70-130			07/08/19
Propachlor	0.20	0.50	ua/L	0.19	ND	105	70-130			07/08/19
Simazine	0.13	0.070	uq/L	0.13	ND	97	70-130			07/08/19
Thiobencarb	0.20	0.10	ua/L	0.19	ND	105	70-130			07/08/19
Surrogate: 1,3-Dimethyl-2-nitrobenzene	0.93		U	0.95		98	70-130			07/08/19
		EPA 53	31.1 - Q	uality Co	ntrol					
Batch: A909415			-	· . , - •						Prepared: 7/3/2019
Prep Method: EPA 531.1										Analyst: JNG
Blank (A909415-BLK1)										
3-Hydroxycarbofuran	ND	2.0	ug/L							07/03/19
Aldicarb	ND	0.50	uq/L							07/03/19
Aldicarb Sulfone	ND	0.80	ug/L							07/03/19
Aldicarb Sulfoxide	ND	0.50	ug/L							07/03/19
Carbaryl	ND	2.0	uq/L							07/03/19
Carbofuran	ND	0.90	ua/L							07/03/19
Methomyl	ND	2.0	ua/L							07/03/19
Oxamyl	ND	2.0	ug/L							07/03/19
Blank Spike (A909415-BS1)										
3-Hydroxycarbofuran	43	2.0	ua/l	4 0	ND	106	80-120			07/04/19
Aldicarb	2.2	0.50	ug/L	2.0	ND	108	80-120			07/04/19
Aldicarb Sulfone	3.4	0.80	ug/L	3.2	ND	105	80-120			07/04/19
Aldicarb Sulfoxide	19	0.50	ug/L	2.0	ND	93	80-120			07/04/19
Carbaryl	4.3	2.0	ug/L	4.0	ND	108	80-120			07/04/19
Carbofuran	3.9	0.90	ug/L	3.6	ND	110	80-120			07/04/19
Methomyl	4.3	2.0	ug/L	4.0	ND	108	80-120			07/04/19
Oxamyl	4.4	2.0	ug/L	4.0	ND	110	80-120			07/04/19
Blank Spike Dup (A909415-BSD1)										
3-Hydroxycarbofuran	4 1	2.0	ua/l	4 0	ND	102	80-120	4	20	07/04/19
Aldicarb	20	0.50	ua/l	2.0	ND	102	80-120	6	20	07/04/19
Aldicarb Sulfone	3.3	0.80	ua/l	3.2	ND	103	80-120	2	20	07/04/19
Aldicarb Sulfoxide	1.8	0.50	ua/l	2.0	ND	91	80-120	2	20	07/04/19
Carbaryl	4.2	2.0	ua/l	4.0	ND	106	80-120	2	20	07/04/19
Carbofuran	4.2	0.90	ua/l	3.6	ND	118	80-120	7	20	07/04/19
Methomyl	4.2	2.0	ug/L	4.0	ND	105	80-120	2	20	07/04/19
Oxamyl	4.2	2.0	ug/L	4.0	ND	105	80-120	5	20	07/04/19
Matrix Spike (A909415-MS1), Source: A	9F3495-01									
3-Hydroxycarbofuran	4 1	20	ua/l	4 0	ND	103	65-135			07/04/19
Aldicarb	20	0.50	ua/l	2.0	ND	102	65-135			07/04/19
Aldicarb Sulfone	3.4	0.80	ua/l	3.2	ND	105	65-135			07/04/19
Aldicarb Sulfoxide	2.0	0.50	ua/L	2.0	ND	100	65-135			07/04/19
	-		0	-						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	0	iyanics G	ruality	Contro	n Report					
Analuto	Popult	DI	Unite	Spike	Source	% REC	%REC	PDD	RPD	Date
Anaryte	Kesuit		-omis-	Lever	Kesuit	70REC		-RPD	-Emm	Analyzeu Qual
- /		EPA 53	31.1 - Qi	uality Co	ntrol					
Batch: A909415										Prepared: 7/3/2019
Prep Method: EPA 531.1										Analyst: JNC
Matrix Spike (A909415-MS1), Source:	A9F3495-01									
Carbaryl	4.4	2.0	ug/L	4.0	ND	109	65-135			07/04/19
Carbofuran	3.7	0.90	ug/L	3.6	ND	102	65-135			07/04/19
Methomyl	4.3	2.0	ug/L	4.0	ND	107	65-135			07/04/19
Oxamyl	4.3	2.0	ug/L	4.0	ND	108	65-135			07/04/19
		EPA 5	547 - Qu	ality Cor	ntrol					
Batch: A909212										Prepared: 6/30/2019
Prep Method: EPA 547										Analyst: JNC
Blank (A909212-BLK1)										
Glyphosate	ND	6.0	ug/L							07/01/19
Surrogate: AMPA	190		9	200		95	70-130			07/01/19
Blank Spike (A909212-BS1)										
Glyphosate	97	6.0	ug/L	100	ND	97	70-130			07/01/19
Surrogate: AMPA	170		U	200		87	70-130			07/01/19
Blank Spike Dup (A909212-BSD1)										
Glyphosate	93	6.0	ug/L	100	ND	93	70-130	4	30	07/01/19
Surrogate: AMPA	170			200		85	70-130			07/01/19
Matrix Spike (A909212-MS1), Source:	A9F2960-01									
Glyphosate	96	6.0	ug/L	100	ND	96	70-130			07/01/19
Surrogate: AMPA	160		Ū	200		82	70-130			07/01/19
Matrix Spike Dup (A909212-MSD1), S	ource: A9F2960-01									
Glyphosate	100	6.0	ug/L	100	ND	101	70-130	5	30	07/01/19
Surrogate: AMPA	170			200		86	70-130			07/01/19
		EPA 54	48.1 - Qi	uality Co	ntrol					
Batch: A909350				-						Prepared: 7/2/2019
Prep Method: EPA 548.1										Analyst: JKH
Blank (A909350-BI K1)										
	ND	٥٥	uc/l							07/03/19
		9.0	uy/L							51100113
Blank (A909350-BLK2)										
Endothall	ND	9.0	ug/L							07/03/19
Blank (A909350-BLK3)										
Endothall	ND	9.0	ug/L							07/03/19
Blank (A909350-BLK4)										
Endothall	ND	9.0	ug/L							07/03/19
Plank Sniko (AGA0250 PS4)			-							
	a analyzad to								105201	2 EINAL 07152010 1014
ne results in this report apply to the sample	s analyzed in								195301	2 I INAL UT 152019 1014

accordance with the chain of custody document. This

analytical report must be reproduced in its entirety.

Page 13 of 18

Pag

		. gainee (Lucinty							
				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 54	48.1 - Q	uality Co	ntrol					
Batch: A909350										Prepared: 7/2/2019
Prep Method: EPA 548.1										Analyst: JKH
Blank Spike (A909350-BS1)										
Endothall	17	9.0	ug/L	20	ND	86	46-116			07/03/19
Blank Spike Dup (A909350-BSD1)										
Endothall	15	9.0	ug/L	20	ND	76	46-116	12	30	07/03/19
MRL Check (A909350-MRL1)										
Endothall	ND	9.0	ug/L	2.0	ND	102	0-200			07/03/19
MRL Check (A909350-MRL2)										
Endothall	ND	9.0	ug/L	2.0	ND	100	0-200			07/03/19
MRL Check (A909350-MRL3)										
Endothall	ND	9.0	ug/L	2.0	ND	88	0-200			07/03/19
Matrix Spike (A909350-MS1), Source:	A9F3812-01									
Endothall	5.3	9.0	ug/L	20	ND	26	46-116			07/03/19 MS1.0 Low
		EPA 54	49.2 - Q	uality Co	ntrol					
Batch: A909282										Prepared: 7/2/2019
Prep Method: EPA 549.2										Analyst: ANM
Blank (A909282-BLK1)										
Diquat	ND	0.40	ug/L							07/05/19
Blank Spike (A909282-BS1)										
Diquat	3.5	0.40	ug/L	4.0	ND	87	70-130			07/05/19
Blank Spike Dup (A909282-BSD1)										
Diquat	3.5	0.40	ug/L	4.0	ND	89	70-130	1	30	07/05/19
Matrix Spike (A909282-MS1), Source:	A9F3408-01									
Diquat	2.8	0.40	ug/L	4.0	ND	69	70-130			07/05/19 MS1.0 Low

Certificate of Analysis

Notes:

- · The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating
 Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Field tests are outside the scope of laboratory accreditation and there is no certification available for field testing.
- Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
µg/L:	Micrograms/Liter (ppb)	ND:	None Detected below MRL/MDL	CFU:	Colony Forming Unit
µg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	PicoCuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit	U:	The analyte was not detected at or above the reported sample quantitation

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAP program for the following parameters:

NA

limit

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Certificate of Analysis

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

Fresno

State of California - ELAP	1180	State of Hawaii	4021
Los Angeles CSD	9254479	NELAP certified	4021-011
State of Nevada	CA000792019-1	State of Oregon - NELAP	4021-011
EPA - UCMR4	CA00079	State of Washington	C997-19a
Sacramento			
State of California - ELAP	2435		
San Bernardino			
State of California - ELAP	2993	Los Angeles CSD	9254478
NELAP certified	4119-003	State of Oregon - NELAP	4119-003
Vancouver			
NELAP certified	WA100008-012	State of Oregon - NELAP	WA100008-012
State of Washington	C824-18b		

	- - -						A9F3812		06/28/	2019	
BSK /	Associate	s 3R-FL-0002-20					Sierr24(10	
Sa	mpl	e Integri	ty		N 1						
BS	K Bo	ottles: Kes) No	Page	Sof_	<u> </u>	**			\sim	
COC Info	If sam that ch Did all Do all Was s	$stry \leq 6^{\circ}C$ Mic ples were taken to nilling has begun? bottles arrive unbibottle labels agree odium thiosulfate a	ro < 8°C day, is there evide roken and intact? with COC? added to CN samp	nce	Yes No N Yes No N Yes N Yes No N	A Are courreceive Bubble TB Rec D Is suffice Do san A BA	of for the tests of for the tests of Present in V ceived? (Cheo cient amount of nples have a h d been notified	of discrep conduction of sample model time of d of discrep	/TCP/TTHM 3elow) acceived? 72 hours? pancies?	I)? Yes Yes Yes Yes	NO NA NO NA NO NA S NO S NO
	250ml(.	A) 500ml(B) 1Liter(C) 40mIVOA(V) 125m	I(D)	Checks	Passed?	1	\2			-
	Bacti None	Na2S2O3 (P) ^{White Cap} D) Lt. Green Label/Blue C		DW	 						
	Cr6 (F) Pink Label/Blue Cap	NH4OH(NH4)2SO4	ww	pH 9.3-9.7	P F					
in the lab	Cr6 (F) Black Label/Blue Cap <u>***24 HOUR H</u>	NH4OH(NH4)2SO4 OLD TIME***	7199	pH 9.0-9.5	P F					
med	HNO3	(P) Red Cap or HCI	(P) Purple Cap/Lt. Blue	Label		— —		Second Land	X		
erfor	NaOF	4 (P) OF (AG			p r < z CL pH >10					DA	
re p	NaOH	+ ZnAc (P)			pH > 9	PF				/	
or a	Disso	ved Oxygen 300	Iml (g)		<u> </u>				1	$i \wedge 0$	MIQ
p N/A	None	(AG) 608/8081/8082.	625, 632/8321, 8151, 8	3270	<u> </u>	-			1/0	[] []	<u> </u>
eive ither	HCI (A	G) ^{Lt. Blue Label} 08	G, Diesel, TCP						1 U	t 0	-
Rece are e	Ascor	bic, EDTA, KH ₂ C	t (AG) ^{Pink Label} 52	!5	 -		X				
es f scks	Na ₂ SC	D₃ 250mL (AG) [№]	eon Green Label 515			-	<u>IA</u>				
e che	Na ₂ S ₂	O ₃ 1 Liter (Brown	1 P) 549 548 THM 524				1Δ				
lorin E	Na ₂ S ₂	O ₃ (CG) ^{Blue Label}	504, 505, 547				71	21/13			
on/ch	Na ₂ S ₂	O3 + MCAA (CG) ^{Orange Label} 531		pH < 3	PF	ΠV I	/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
vatic	NH₄C	(AG)Purple Label	i52		-						
resei	EDA (AG) ^{Brown Label} DE	3Ps								
d su	HCL (CG) 524.2,BTEX,G	as, MTBE, 8260/624		-	-					
mea	Buffer	PH 4 (CG)									
ן נ	H ₃ PO. Trizma	a – FPA 537.1			-	<u></u>					
	Other										
	Asbes	stos 1L (P) w/ Fo d W/ater	il / LL Metals B	lottle							
	Clear (Glass 125mL / 250	mL / 500mL / 1 L	iter				an ang a panangan ta			
	Solids	: Brass / Stee	I / Plastic Bag			-	O contaciona			Dete/Tim	
olit	SP	Container	Preservative	Date/1	ime/initials	S P	Containe	res	ervative	Date/11n	ne/mitials
S	SP				<u></u>	SP				· · · · · · · · · · · · · · · · · · ·	
-	· · · .						Indicates BI	anks Rec	eived		
Comments						504 <u> </u>	524.2 4	TCP	ТТНМ	537	

Scanned: _____

Page

19819-201

Sottle Type MATRIX DATE COLLECTED MIVLN MATRIX MATRIX		AMPLER Dennis Becker Dennis Becker Dennis Becker Same of Abuser Same of Abuser Sa		AMPLER Dennis Becker Dennis Becker Dome Enderseer ANALTICAL PARS AND TALE AND	BSK Laboratory SPECIAL INSTRUCTIONS / COMMENTS EMAIL: EMAIL: SAMPLER Dennis Becker DOD NN SELVWV84V2-805 S0 8254032080-805 S0 8255-2005-805 S0 8255-2005 S0 82555-2005 S0 82555-2005	EMAIL: SAMPLER Dennis Becker Dennis Becker 100 00 01 11 11 11 11 11 11 1	BSK Laboratory Image: Source of the sector of the sect	BSK Laboratory BSK Laboratory BSK Laboratory BSK Laboratory EMAL:	A9F3812 06/28/2019 1135 F Sierr2400 10 Re Sierr2400 10 Re THL: (FAX: () FAX:
--	--	---	--	--	--	---	--	---	--

J	
Page _	- 1 f 22
COMPLIANCE MONITORING?	NEW ADDRESS?
No X	Results:
Applicabl	le Program
Mining Other	
QC Levi	el Report
NOTE: Surcharges apply Send Re:	sults Via:
Mail: 🕅 Email:	: 🕅 Fax:
Send Inv	voice Via:
Field Mea On-Site pH:	Chlorine:
Temperature:	Other.
Date	Time
2n/19 10	510
1 31/20	226
1/19/19/10	210
ngements are made and stora s as they are received by the k	age fees may apply. laboratory.
* P-Plastic, G-Glass, V-\	Voa Vial, OT-Other
COMPLIANCE MONITORING Yes No Applic SDWA Applic SDWA Minning OTE Send Mail: Send Mail: Field I On-Site pH: Temperature: Temperature: Temperature: Temperature: Send Send Send Send Mail: Field I On-Site pH: Temperature: Temperature: Temperature: Temperature: Temperature: Send Send Send Send Send Mail: Field I On-Site pH: Temperature: Temperature: Send Send	

Definitions & Qualifiers

WO#: **19061599** Date: **7/15/2019**

Definitions:

LCS: Laboratory Control Sample; prepared by adding a known mass of target analytes to a specified amount of de-ionized water and prepared with the batch of samples, used to calculate Accuracy (%REC).

LCSD: LCS Duplicate; used to calculate both Accuracy (%REC) and Precision (%RPD)

MBLK: Method Blank; a sample of similar matrix that is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedure, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses.

MS: Matrix Spike; prepared by adding a known mass of target analytes to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available, used to calculate Accuracy (%REC)

MSD: Matrix Spike Duplicate; used to calculate both Accuracy (%REC) and Precision (%RPD)

RPD: Relative Percent Difference; comparison between sample and duplicate and/or MS and MSD.

PQL: Practical Quantitation Limit; the limit to which data is quantitated for reporting.

MDL: Method Detection Limit; the limit to which the instrument can reliably detect.

MCL: Maximum Contaminant Level; value set according to EPA guidelines.

Qualifiers:

- * Analyte exceeds Safe Drinking Water Act MCL, does not meet drinking water standards.
- C Analyte value below Safe Drinking Water Act MCL, does not meet drinking water standards.
- B Analyte found above the PQL in associated method blank.
- G Calibration blank analyte detected above PQL.
- H Sample analyzed beyond holding time for this parameter.
- J Estimated Value; Analyte found between MDL and PQL limits.
- L Sample concentration is at least 5 times greater than spike contribution. Spike recovery criteria do not apply.
- R RPD between sample and duplicate sample outside the RPD acceptance limits.
- S Batch MS and/or MSD were outside acceptance limits, batch LCS was acceptable.
- W Sample temperature when recieved was out of limit as specified by method.